In situ IR and NMR spectroscopic investigation of the formation and structure of protonated diacetylketene tetrachloroaluminate

Szilárd Csihony, ${ }^{a}$ Andrea Bodor, ${ }^{a}$ János Rohonczy ${ }^{b}$ and István T. Horváth *a
${ }^{\text {a }}$ Department of Chemical Technology and Environmental Chemistry, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary. E-mail: istvan.t.horvath@hit-team.net
${ }^{b}$ Department of General and Inorganic Chemistry, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

Received (in Cambridge, UK) 29th August 2002, Accepted 31st October 2002
First published as an Advance Article on the web 21st November 2002

In situ IR and multinuclear NMR are used to monitor the formation of protonated diacetylketene tetrachloroaluminate (1) in the reaction of acetyl chloride and AlCl_{3} in both dichloromethane and in 1-butyl-3-methylimidazolium chloride ($[\mathrm{bmim}] \mathrm{Cl})$. The existence of a fast equilibrium between two enolic forms of protonated diacetylketene (with $\left[\mathrm{AlCl}_{4}\right]^{-}$as the counterion) is established. The structure of $\mathbf{1}$ is determined by the rarely used ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY experiment.

Introduction

The application of stoichiometric amounts of reagents in chemical manufacture always leads to the formation of spent reagents, which have to be either regenerated or discharged as waste, frequently resulting in serious environmental problems. ${ }^{1}$ Waste minimization can be achieved by the replacement of a reagent with a catalyst provided the catalytic reaction is atom efficient. ${ }^{2}$ Since the formation of side-products could decrease the atom economy of a catalytic approach, their characterization and the determination of the mechanism involved is crucial for the development of waste-free green processes.
The Friedel-Crafts acylation is one of the basic reactions in organic chemistry. ${ }^{3}$ Although several investigations have been performed to establish the exact reaction mechanism, ${ }^{3,4}$ the characterization of all reaction intermediates and side-products is still not complete. It is well established that the initial step is the interaction of the acyl halide with the Lewis acid leading to different donor-acceptor complexes followed by the facile formation of the acylium ion $\left(\mathrm{RCO}^{+}\right){ }^{5,6}$ It should be noted that in the case of acetylation with $\mathrm{CH}_{3} \mathrm{COCl}$ in the presence of AlCl_{3}, the formation of a side product, the diacetylacetylium tetrachloroaluminate, $\quad\left[\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{CHCO}^{+}\left[\mathrm{AlCl}_{4}\right]^{-}\right.$(1), was observed by IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{3 c, 7}$ It has been proposed that this compound has two different tautomer forms (Scheme 1, structures $\mathbf{1 a}-\mathbf{1 d}$) and it forms via the trimerization of the acylium ion $\left[\mathrm{CH}_{3} \mathrm{CO}\right]^{+}\left[\mathrm{AlCl}_{4}\right]^{-}$. In addition, the formation of polymeric species has also been noted. In the contrary, the reaction of $\mathrm{CH}_{3} \mathrm{COCl}$ with AlCl_{3} at a molar ratio of $1: 1$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ does not lead to $\mathbf{1}$ and only the formation of the donor-acceptor complexes of $\mathrm{CH}_{3} \mathrm{COCl}$ and AlCl_{3}, and acetylium ion were observed. ${ }^{8}$

The analogous $\left[\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{CHCO}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$, called the diaceto-acetylium hexafluoroantimonate, was isolated and the existence of a fast equilibrium between two enolic forms was established by IR and NMR. ${ }^{9}$ Since the presence of a methyne carbon could not be established using ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}$-NMR, a significant contribution of a "ketene-like" resonance form was suggested (Scheme 1, structures 1b and 1c). Consequently, we believe that the compound is best described as protonated diacetylketene hexafluoroantimonate with two enolic forms. Although the same structures were proposed for the tetrachloroaluminate salt as well, no supporting spectroscopic evidence was provided.

1d
1c
Scheme 1

We have recently shown by in situ IR that the acetylation of benzene in the presence of $\mathrm{MCl}_{3}(\mathrm{M}=\mathrm{Al}, \mathrm{Fe})$ in both $1,2-$ dichloroethane and in ionic liquids proceeds through the same mechanism. ${ }^{10,11}$ The slow formation of $\mathbf{1}$ was noted and it was shown that it requires the presence of acetyl chloride in excess with respect to $\mathrm{AlCl}_{3} .{ }^{11}$ We report here the results of a detailed in situ NMR investigation on the formation of $\mathbf{1}$ including its complete structural characterization.

Results and discussion

We have investigated the reaction of $\mathrm{CH}_{3} \mathrm{COCl}$ and 99% ${ }^{13} \mathrm{C}$-labelled $\mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ with AlCl_{3} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ by IR. In the case of $\mathrm{CH}_{3} \mathrm{COCl}$, the position and the time-profile of the peaks (Fig. 1) are the same as in 1,2-dichloroethane. ${ }^{10,11}$ The band at $1800 \mathrm{~cm}^{-1}$ (A) is due to acetyl chloride and the bands at 1644 (B) and 1571 (C) cm^{-1} are assigned to the $1: 1$ and 1:2 complexes of acetyl chloride and AlCl_{3}, respectively. The bands of $\mathbf{1}$ appear at $2200(\mathrm{D})$ and $1636(\mathrm{E}) \mathrm{cm}^{-1}$. When the reaction is repeated with $\mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$, all the bands are shifted to lower wave numbers, as expected. Thus, the band of $\mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ appears at $1760 \mathrm{~cm}^{-1}\left(\mathrm{~A}^{\prime}\right)$, while the bands of the $1: 1$ and $1: 2$ complexes are shifted to $1617\left(\mathrm{~B}^{\prime}\right)$ and $1525\left(\mathrm{C}^{\prime}\right) \mathrm{cm}^{-1}$, respectively. Finally, the bands of $\mathbf{1}$ are at $2138\left(\mathrm{D}^{\prime}\right)$ and $1594\left(\mathrm{E}^{\prime}\right)$ cm^{-1}. In addition, the time-profiles of these peaks are the same as for $\mathrm{CH}_{3} \mathrm{COCl}$.

Table 1 Chemical shift and coupling constant values

Species	${ }^{1} \mathrm{H}-\mathrm{NMR}$		${ }^{13} \mathrm{C}-\mathrm{NMR}$		${ }^{1} J_{\mathrm{CC}} / \mathrm{Hz}$	${ }^{2} J_{\mathrm{CC}} / \mathrm{Hz}$	${ }^{1} J_{\mathrm{CH}} / \mathrm{Hz}$	${ }^{2} J_{\mathrm{CH}} / \mathrm{Hz}$
	δ / ppm	LW/Hz	δ / ppm	LW/Hz				
$\mathrm{CH}_{3} \mathrm{COCl}$	2.70	1.3	170.7	1.8	56.4	-	132.9	7.4
			33.9	1.3				
Donor-acceptor complexes ${ }^{a}$	2.83	1.6	178.5	11.4	54.5	-	133.3	7.2
			34.7	6.6				
1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$-{ }^{\text {b }}$	-	207.1-207.9 ${ }^{\text {b }}$	-	-	-	-	-
			169.3-170.1					
			77.5-79.2					
			31.8-32.7					
1 in ionic liquid	2.33	1.2	207.3	1.8	45.8; 59.6	6.4	133.3	7.6
			169.7	1.8	98.0	2.8; 3.3		
			78.0	1.8	98.0; 59.6	8.25		
			31.5	1.8	45.8	3.7; 4.6		

${ }^{a}$ Donor-acceptor complexes of $\mathrm{CH}_{3} \mathrm{COCl}$ and $\mathrm{AlCl}_{3} .{ }^{b}$ Too small intensity, negligible peaks, the region in which they appear is given.

Fig. 1 In situ IR spectra of the reaction of AlCl_{3} and $\mathrm{CH}_{3} \mathrm{COCl}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

The application of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ for the characterization of $\mathbf{1}$, prepared from $99 \%{ }^{13} \mathrm{C}$-labeled $\mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$, was limited as the intensities of the peaks due to the non-labelled carbons were negligible. Therefore, the in situ NMR investigation was repeated using $99 \%{ }^{13} \mathrm{C}$-labelled ${ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$.

First, the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR of ${ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was recorded. While the ${ }^{1} \mathrm{H}$-NMR exhibits a doublet of doublets due to the coupling of the two C atoms, by one and two bonds, respectively, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum consists of two doublets with the same coupling constant, as shown in Table 1. Then, solid AlCl_{3} was added under N_{2} resulting in the final solution containing $7.5 \mathrm{mmol}^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ and $1.5 \mathrm{mmol} \mathrm{AlCl}_{3}$ (ratio 5:1) in $10 \mathrm{mmol} \mathrm{CD}_{2} \mathrm{Cl}_{2}$.
In the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectra recorded immediately after the dissolution of the solid AlCl_{3} the chemical shifts of the methyl groups, and the coupling constant values, do not change significantly. In contrast, there is an 8 ppm change in the chemical shift of the carbonyl groups. It should be noted that the IR has showed separate carbonyl vibrations for the free acetyl chloride and for the various donor-acceptor complexes of $\mathrm{CH}_{3} \mathrm{COCl}$ and AlCl_{3}. It appears that the exchange between the free and coordinated acetyl chloride is so fast on the NMR time scale, that only the averaged signal could be observed at room temperature. The 11.4 Hz line width of this signal compared to the 1.8 Hz value for the free $\mathrm{CH}_{3} \mathrm{COCl}$ also confirms the existence of this exchange. The time dependent ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra show the appearance of new peaks at around 207, 170, 78 and 32 ppm , as shown in Fig. 2 (see also Table 1). On the basis of

Fig. $2{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra recorded at $3,7,9,12,15,17$ hours (beginning from the bottom spectrum) after mixing a solution containing 7.5 $\mathrm{mmol}{ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ and $1.5 \mathrm{mmol} \mathrm{AlCl}_{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The two zoomed figures belong to the new signals.
previous IR and NMR results the appearance of these peaks is consistent with the formation of $\mathbf{1}$. However, their intensity is very low compared to those of the acetyl chloride signals and there is no dramatic change in their intensities during the next 18 hours. It should be noted, that the solubility of $\mathbf{1}$ is limited in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and the formation of a second colourless glassy-phase was observed at the bottom of the tube.
Since the solubility of $\mathbf{1}$ in ionic liquids is expected to be higher, we have repeated the reaction in $[b \operatorname{mim}]\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right]$. The ratio of $5: 1$ between the acetyl chloride and AlCl_{3} is achieved by adding 3.35 mmol acetyl chloride $\left(1.82 \mathrm{mmol}^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}\right.$ and $1.53 \mathrm{mmol} \mathrm{CH}_{3} \mathrm{COCl}$) to $0.34 \mathrm{mmol}[\mathrm{bmim}]\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right]$ (equivalent to $0.67 \mathrm{mmol}_{\mathrm{AlCl}_{3}}$) in an NMR tube under $\mathrm{N}_{2} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra taken immediately after mixing show a broad multiplet due to the methyl groups of several species including donoracceptor complexes of $\mathrm{CH}_{3} \mathrm{COCl}$ and AlCl_{3} (see Fig. 3). The

Fig. $3{ }^{1} \mathrm{H}$-NMR spectra recorded after mixing (bottom spectrum) and after one day (top spectrum) of a sample containing 0.34 mmol $[\operatorname{bmim}]\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right]$ and 3.35 mmol acetyl chloride $\left(1.82 \mathrm{mmol}{ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}\right.$ and $1.3 \mathrm{mmol} \mathrm{CH} 3 \mathrm{COCl}^{2}$.
structure of the broad multiplet originates from the fact that both labelled and non-labelled carbons are present. The labelled ones give rise to a doublet of doublets, while the nonlabelled is a singlet. After one day, the intensities of the originally broad methyl signals decrease and a downfield shift in their position is observed, i.e. the central peak is shifted from 2.51 ppm to 2.64 ppm . At the same time a new set of sharp resonances appeared at 2.33 ppm .

The progress of the reaction was monitored by ${ }^{13} \mathrm{C}-\mathrm{NMR}$. While all NMR data are reported in Table 1, the change in the carbonyl region is shown in Fig. 4. At the beginning of the reaction broad signals are observed at 176.4 and 33.0 ppm indicating the presence of various donor-acceptor complexes of $\mathrm{CH}_{3} \mathrm{COCl}$ and AlCl_{3}, in accordance with the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ results. These broad signals have continuously shifted to 172.4 ppm and 34.3 ppm , respectively, in the next 14 hours and become wellresolved but still broad doublets, as expected. In the same time several new resonances have appeared at 207.3, 169.7, 78.0, and 31.5 ppm and their relative integrals are 2:1:1:2. These resonances are assigned to $\mathbf{1}$. While the peaks at 207.3 and 169.7 are due to the carbonyl groups, the resonance at 31.5 ppm is assigned to the methyl groups. Since the peak at 78.0 ppm does not appear in the ${ }^{13} \mathrm{C}$-NMR spectra recorded with DEPT135 pulse sequence, it can only be assigned to a carbon atom without directly attached proton(s). The connectivity between these peaks can be established by ${ }^{13} \mathrm{C}^{13} \mathrm{C}$ COSY correlation, which is shown in Fig. 5 (resonances due to $\mathbf{1}$ are marked with asterisks

Fig. 4 Time evolution (from bottom at 1, 1.5, 3, 4, 6, 8, 10, 12, 14 hours after mixing) of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR carbonyl region at 125 MHz of a sample containing $0.34 \mathrm{mmol}[\mathrm{bmim}]\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right]$ and 3.35 mmol acetyl chloride ($1.82 \mathrm{mmol}{ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ and $1.53 \mathrm{mmol} \mathrm{CH}_{3} \mathrm{COCl}$). The small peaks at $184,168 \mathrm{ppm}$ are due to the ionic liquid.

Fig. $5 \quad{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ proton decoupled COSY spectra at 125 MHz for a sample containing 0.34 mmol [bmim] $\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right]$ and 3.35 mmol acetyl chloride ($1.82 \mathrm{mmol}{ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ and $1.53 \mathrm{mmol} \mathrm{CH}_{3} \mathrm{COCl}$).
(*) on the top 1D spectrum). COSY cross peaks appear between neighbouring carbon signals and the straight lines help the assignment of the direct $\mathrm{C}-\mathrm{C}$ bonds, while the less intensive cross peaks, visualized by circles, are two-bond distanced carbons. While the established connectivities are consistent with structures 1a-1d on Scheme 1, the observed coupling constants (Fig. 6) provide further structural information. Thus, literature

Fig. 6 One-bond carbon-carbon coupling constant values of 1.
data of one-bond carbon-carbon spin-spin coupling constant values for (i) a simple bond with two sp^{3} hybridized carbons $\left(\mathrm{CH}_{3}-\mathrm{CH}_{3}\right)$ is 34.6 Hz , (ii) simple bond with one sp^{3} and one sp hybridized carbon ($\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$) is 67.4 Hz , (iii) double bond with two sp^{2} hybridized carbons $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ is 67.2 Hz , and (iv) double bond with unusual hybridization as for allenes $\left(\mathrm{CH}_{2}=C=\mathrm{CH}_{2}\right)$ is $98.7 \mathrm{~Hz} .{ }^{12}$ Therefore, our measured value of
98.0 Hz supports the "ketene-like" structures $\mathbf{1 b}, \mathbf{c}$ (Scheme 1). In addition, the most intensive signal at 104.8 ppm , observed by ${ }^{27} \mathrm{Al}-\mathrm{NMR}$, confirms the presence of the $\left[\mathrm{AlCl}_{4}\right]^{-}$counter anion in $\mathbf{1}$, as expected.

Since both labelled and non-labelled carbons are present in the sample, the coupling pattern of the signals can be predicted from the structure proposed for $\mathbf{1 b} \mathbf{b}$. Indeed, the predicted pattern of the resonance at 78.0 ppm is observed experimentally (Fig. 7).

Fig. 7 The splitting in the ${ }^{13} \mathrm{C}$-NMR spectrum of the carbon atom at 78.0 ppm .

Finally, it should be emphasized that protonated diacetylketene (with $\left[\mathrm{AlCl}_{4}\right]^{-}$as the counter anion) is best described as a pair of enolic structures that are in rapid equilibrium and wherein each enolic structure may be described by a number of contributing resonance structures.

Experimental

General

Acetyl chloride and $\mathrm{AlCl}_{3}(99.99 \%)$ were obtained from Aldrich Chemical Co. and were used as received. Acetyl chloride (1,2$13 \mathrm{C} 2,99 \%$) and methylene chloride- d_{2} ($\mathrm{D}, 99.9 \%$) were purchased from Cambridge Isotope Laboratories, Inc. The ionic liquid was prepared by a known method. ${ }^{11}$ All operations were performed under N_{2} atmosphere. All in situ infrared spectroscopic experiments were performed in standard glassware under N_{2} using the ReactIR 1000 spectrometer (Applied Systems Inc, a Mettler-Toledo Company: www.asirxn.com). NMR measurements were performed on Bruker 250 and 500 MHz instruments. An inverse gated decoupling sequence was used for quantitative carbon measurements. A home-made ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ COSY with ${ }^{1} \mathrm{H}$ decoupling sequence was used for ${ }^{13} \mathrm{C}$-labelled samples. All measurements were performed at $25^{\circ} \mathrm{C}$.

In situ IR measurement of the reaction of acetyl chloride with AlCl_{3} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

A 100 ml three necked round-bottomed flask fitted with gas inlet tube, suba-seal, and the IR probe of the ReactIR 1000 instrument was charged with $\mathrm{AlCl}_{3}(40 \mathrm{mg}, 0.3 \mathrm{mmol})$ and
$\mathrm{CD}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml}, 15.7 \mathrm{mmol})$ under $\mathrm{N}_{2} . \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}(0.1 \mathrm{ml}$, 1.5 mmol) was injected using a syringe and the reaction was continuously monitored by IR.

In situ NMR measurement of the reaction of acetyl chloride with $\mathbf{A l C l}_{3}$ in $\mathbf{C D}_{2} \mathbf{C l}_{2}$

${ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}(0.1 \mathrm{ml}, 1.5 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml}, 15.7$ mmol) was charged into an NMR tube under N_{2}. After recording ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra solid $\mathrm{AlCl}_{3}(40 \mathrm{mg}, 0.3 \mathrm{mmol})$ was added to the solution and the reaction was monitored by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-,{ }^{27} \mathrm{Al}-\mathrm{NMR}$.

In situ NMR measurement of the reaction of acetyl chloride with AlCl_{3} in [bmim]Cl

3.35 mmol acetyl chloride (a mixture of 1.82 mmol ${ }^{13} \mathrm{CH}_{3}{ }^{13} \mathrm{COCl}$ and $1.53 \mathrm{mmol} \mathrm{CH}_{3} \mathrm{COCl}$) was added to [bmim]$\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right](296 \mathrm{mg}, 0.34 \mathrm{mmol})$ in an NMR tube under N_{2}. The reaction was monitored by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-,{ }^{27} \mathrm{Al}-\mathrm{NMR}$.

Acknowledgements

This work was partially supported by the Hungarian National Scientific Research Fund (OTKA-T032850) and Exxon Mobil Research and Engineering Company, Annandale, New Jersey, USA. The donation of the ReactIR 1000 instrument by Applied Systems Inc, a Mettler-Toledo Company is greatly appreciated.

References

1 R. A. Sheldon, CHEMTECH, 1994, 24, 38.
2 P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK, 1998.
3 (a) C. Friedel and J. M. Crafts, Bull. Soc. Chim. Fr., 1877, 27, 482; (b) C. Friedel and J. M. Crafts, Bull. Soc. Chim. Fr., 1877, 27, 530; (c) G. A. Olah, Friedel-Crafts and Related Reactions, Vol. III-IV., Wiley-Interscience: New York, USA, 1964; (d) G. A. Olah, Friedel-Crafts Chemistry, Wiley-Interscience: New York, USA, 1973; (e) G. A. Olah, Angew. Chem., Int. Ed. Engl, 1993, 32, 767.

4 (a) B. P. Susz and I. Cooke, Helv. Chim. Acta, 1954, 37, 1273; (b) B. P. Susz and J. J. Wuhrmann, Helv. Chim. Acta, 1957, 40, 971 ; (c) P. N. Gates and D. Steele, J. Mol. Structure, 1967-68, 1, 349; (d) R. Corriu, M. Dore and R. Thomassin, Tetrahedron, 1971, 27, 5601; (e) R. Corriu, M. Dore and R. Thomassin, Tetrahedron, 1971, 27, 5819; (f) F. P. DeHaan, W. D. Covey, G. L. Delker, N. J. Baker, J. F. Feigon, K. D. Miller and E. D. Stelter, J. Am. Chem. Soc., 1979, 101, 1336; (g) H. Haraguchi and S. Fujiwara, J. Phys. Chem, 1969, 73, 3467; (h) A. Manteghetti and A. Potier, Spectrochimica Acta., 1982, 38A, 141; (i) B. Glavincevski and S. Brownstein, J. Org. Chem, 1982, 47, 1005; (j) L. K. Tan and S. Brownstein, J. Org. Chem., 1982, 47, 4737; (k) L.K. Tan and S. Brownstein, J. Org. Chem., 1983, 48, 302; (l) F. P. DeHaan, W. D. Covey, G. L. Delker, N. J. Baker, J. F. Feigon, D. Ono, K. D. Miller and E. D. Stelter, J. Org. Chem, 1984, 49, 3959; (m) P. G. Jasien, J. Phys. Chem, 1995, 99, 6502; (n) P. Tarakeshwar, J. Y. Lee and K. S. Kim, J. Phys. Chem A, 1998, 102, 2253.

5 (a) D. Cook, Can. J. Chem., 1959, 37, 48; (b) G. A. Olah, S. J. Kuhn, W. S. Tölgyesi and E. B. Baker, J. Am. Chem. Soc., 1962, 84, 2733; (c) G. A. Olah, S. J. Kuhn, S. H. Flood and B. A. Hardie, J. Am. Chem. Soc., 1964, 86, 2203; (d) G. A. Olah and M. B. Comisarow, J. Am. Chem. Soc., 1966, 88, 4442; (e) R. Corriu and C. Coste, Bull. Soc. Chim. Fr., 1967, 7, 2562; (f) G. A. Olah and A. M. White, J. Am. Chem. Soc., 1967, 89, 3591; (g) D. Cassimatis, J. P. Bonnin and T. Thephanides, Can. J. Chem., 1970, 48, 3860; (h) B. Chevrier and R. Weiss, Angew. Chem., 1974, 86, 12; (i) G. A. Olah, A. Germain and H. C. Lin, J. Am. Chem. Soc., 1975, 97, 5481; (j) J. Wilinski and R. J. Kurland, J. Am. Chem. Soc., 1978, 100, 2233; (k) J.-M. Le Carpentier and R. Weiss, Acta Crystallogr., Sect. B, 1972, 28, 1437; (l) G. A. Olah, A. Germain and A. M. White, in Carbonium Ions, Eds. G. A. Olah and P. v. R. Schleyer, Vol. 5, Wiley-Interscience: New York, USA, 1976, pp 2049-2133; (m) I. S. Akhrem, A. V. Orlinkov, V. I. Bakhmutov, P. V. Petrovskii, T. I. Pekhk, E. T. Lippmaa and M. E. Vol'pin, Dokl. Akad. Nauk. Ser. Khim., 1985,

284, 627; (n) M. E. Vol'pin, I. Akhrem and A. Orlinkov, New J. Chem, 1989, 13, 771.
6 F. P. Boer, J. Am. Chem. Soc, 1968, 94, 6706.
7 (a) A. Germain, A. Commeyras and A. Casadevall, J. Chem. Soc., Chem. Commun., 1971, 633; (b) A. Germain, A. Commeyras and A. Casadevall, Bull. Soc. Chim. Fr., 1972, 8, 3177.

8 F. Bigi, G. Casnati, G. Sartori and G. Predieri, J. Chem. Soc., Perkin Trans. 2, 1991, 1319.

9 G. A. Olah, A. Germain, H. C. Lin and K. Dunne, J. Am. Chem. Soc., 1975, 97, 5477.
10 S. Csihony, H. Mehdi and I. T. Horváth, Green Chem., 2001, 3, 307.

11 S. Csihony, H. Mehdi, Z. Homonnay, A. Vértes, Ö. Farkas and I. T. Horváth, J. Chem. Soc., Dalton Trans., 2002, 680.

12 L. B. Krivdin and G. A. Kalabin, Prog. NMR Spectrosc., 1989, 21, 293.

